

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2609

Mechanics 3

Friday

21 JANUARY 2005

Afternoon

1 hour 20 minutes

Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- Where a numerical value for the acceleration due to gravity is needed, use $g = 9.8 \text{ m s}^{-2}$ unless otherwise instructed.
- · The total number of marks for this paper is 60.

Each of two light elastic strings, AB and BC, has modulus 20 N. AB has natural length $0.5 \,\mathrm{m}$ and BC has natural length $0.8 \,\mathrm{m}$. The strings are both attached at B to a particle of mass $0.75 \,\mathrm{kg}$. The ends A and C are fixed to points on a smooth horizontal table such that $AC = 2 \,\mathrm{m}$, as shown in Fig. 1.

Fig. 1

Initially the particle is held at the mid-point of AC and released from rest.

(i) Find the tension in each string before release and calculate the acceleration of the particle immediately after it is released. [5]

The particle is now moved to the position where it is in equilibrium. The extension in AB is e m.

The particle is now held at A and released from rest.

- (iii) Show that in the subsequent motion BC becomes slack. Calculate the furthest distance of the particle from A. [6]
- A simple pendulum consists of a light inextensible string AB of length l with the end A fixed and a particle of mass m attached to B. The pendulum oscillates with period T.
 - (i) It is suggested that T is proportional to a product of powers of m, l and g. Use dimensional analysis to find this relationship. [4]

The angle that the string makes with the downward vertical at time t is θ . The particle is released from rest with the string taut and $\theta = \theta_0$.

(ii) Use the equation of motion of the particle to find the angular acceleration, $\ddot{\theta}$, in terms of θ , l and g.

The angle θ_0 is chosen so that θ remains small throughout the motion.

- (iii) Use the small angle approximation for $\sin \theta$ to show that the particle performs approximate angular simple harmonic motion. State the period of the motion and verify that it is consistent with your answer to part (i). [4]
- (iv) Calculate the proportion of time for which the particle travels faster than half of its maximum speed. [4]

Michael is attempting to make a small car do a 'loop-the-loop' on a smooth toy racing track. He propels a car of mass $m \log t$ towards a section of the track in the form of a vertical circle of radius 0.2 m and the car enters the circle at its lowest point with a speed of $2.8 \,\mathrm{m\,s^{-1}}$. During the motion around the circle the angle the car has turned through is denoted by θ , as shown in Fig. 3.

Fig. 3

(i) Show that the speed, $v \, \text{m s}^{-1}$, of the car is given by $v^2 = 3.92(1 + \cos \theta)$. Hence show that the reaction of the track on the car, RN, is given by $R = 9.8m(2 + 3\cos \theta)$. [7]

The car leaves the track at the point P where $\theta = \alpha$.

(ii) Calculate α . [2]

(iii) Calculate the speed of the car at P and hence calculate the greatest height of the car above the level of P. [3]

The car hits the track at the point Q which is $\frac{22}{135}$ m below the level of the centre of the circle.

(iv) Calculate the speed with which the car hits the track at Q. [3]

Fig. 4.1 shows a uniform lamina OAB in the shape of the region between the curve $y = 4x - x^3$ and the x-axis. The point G is the centre of mass of the lamina.

Fig. 4.1

(i) Show that G has coordinates
$$(\frac{16}{15}, \frac{128}{105})$$
.

[11]

OAB is suspended by wires at O and B and hangs in equilibrium in a vertical plane with OB horizontal. The wire at B is at 60° to the horizontal and the wire at O is at α° to the horizontal, as shown in Fig. 4.2.

Fig. 4.2

(ii) Calculate α .

[4]

Mark Scheme

1(i)	$T_{AB} = \frac{20 \times 0.5}{0.5} = 20 \text{ N}$	M1	Hooke's law	
	***	A1		
	$T_{BC} = \frac{20 \times 0.2}{0.8} = 5 \text{ N}$	A1		
	$(\pm)0.75a = 20-5$	M1	N2L	
	$a = (\pm)20 \text{ m s}^{-2}$	F1		
				5
(ii)	20e 20(0.7-e)	B1	0.7 - e	
	$\frac{20e}{0.5} = \frac{20(0.7 - e)}{0.8}$	M1	equilibrium equation	
	0.000	A1		
	e = 0.269	A1	cao	
				4
(iii)	if BC goes slack when speed = v			
	$\frac{1}{2}mv^2 + \frac{\lambda \times 0.7^2}{2 \times 0.5} = \frac{\lambda \times 1.2^2}{2 \times 0.8}$	M1	energy equation	
	$\frac{1}{2}mv^2 = 8.2 > 0$ hence BC goes slack	E1		
	at furthest distance, $\frac{\lambda \times (AB - 0.5)^2}{2 \times 0.5} = \frac{\lambda \times 1.2^2}{2 \times 0.8}$	M1	energy equation	
		M1	EPE term in terms of a variable	
		A1	correct equation	
	AB = 1.45 m	A1	cao	
1				_

2(i)	$T = km^{\alpha} l^{\beta} g^{\gamma} \Rightarrow T = M^{\alpha} L^{\beta} (LT^{-2})^{\gamma}$	M1	substitute dimensions	
	$\alpha = 0$	M1	equate indices and solve	
	$-2\gamma = 1 \Longrightarrow \gamma = -\frac{1}{2}$	A1	at least two correct indices	
	$\beta + \gamma = 0 \Rightarrow \beta = \frac{1}{2} \text{ so } T = k \sqrt{\frac{l}{g}}$	A1	formula (aef)	
				4
(ii)	$ml\ddot{\theta} = -mg\sin\theta$	M1	N2L tangentially (no tension term)	
	v	A1	accept sign error	
	$\ddot{\theta} = -\frac{g}{l}\sin\theta$	A1		
				3
(iii)	$\ddot{\theta} \approx -\frac{g}{l}\theta$ hence SHM	M1	use $\sin \theta \approx \theta$	
		E1	must conclude SHM	
	period = $2\pi \sqrt{\frac{l}{g}}$	B1	follow their SHM equation	
	i.e. as in (i) with $k = 2\pi$	B1		4
(iv)	$\dot{\theta} = -\theta_0 \omega \sin \omega t$	M1	clear attempt at velocity (not displacement) in terms of time (must use sin or cos)	4
	$\left \dot{\theta}\right > \frac{1}{2} \dot{\theta}_{\text{max}} \iff \left \sin \omega t\right > \frac{1}{2}$	M1	inequality for sin (or cos)	
	for one half-period, $\left(0 \leqslant t \leqslant \frac{\pi}{\omega}\right)$ we have $\frac{1}{6}\pi < \omega t < \frac{5}{6}\pi$	M1	solve inequality	
	proportion $=$ $\frac{\frac{5\pi}{6\omega} - \frac{\pi}{6\omega}}{\frac{\pi}{\omega}} = \frac{2}{3}$	A1		
				4

7

3

3

3(i)	$\frac{1}{2}m \cdot 2.8^2 - mg \cdot 0.2 = \frac{1}{2}mv^2 - mg \cdot 0.2\cos\theta$	
	$v^2 = 2.8^2 - 0.4g + 0.4g\cos\theta$	
	$v^2 = 3.92(1 + \cos\theta)$	

$$R - mg\cos\theta = m\frac{v^2}{r}$$

N2L with $\frac{v^2}{r}$ or $r\omega^2$ M1

attempt energy equation correct equation (any form)

 $=19.6m(1+\cos\theta)$

substitute v^2 M1

$$R = 9.8m(2 + 3\cos\theta)$$

must use N2L in form $\sum F = ma$ or clearly E1 justify signs

(ii) leaves when
$$R = 0$$

M1

A1 E1

A1

$$2+3\cos\theta=0 \Rightarrow \alpha=\cos^{-1}\left(-\frac{2}{3}\right)\approx 2.3\,\mathrm{rad}\approx 132^{\circ}$$

2

(iii)
$$v^2 = 3.92(1 - \frac{2}{3}) \Rightarrow v = \sqrt{\frac{3.92}{3}} \approx 1.143$$

B1

vertical cpt
$$v_y = \sqrt{\frac{3.92}{3}} \sin(\pi - \alpha)$$

M1

$$v_y^2 = 2gh \Rightarrow h = \frac{1}{27} \approx 0.037 \text{ m}$$

A1

(iv)
$$\frac{1}{2}mv^2 - mg \cdot \frac{22}{135} = \frac{1}{2}m \cdot 2.8^2 - mg \cdot 0.2$$

M1 energy equation

A1

 $v = 2.67 \text{ m s}^{-1}$

A1 cao

4(i) area = $\int_0^2 (4x - x^3) dx = \left[2x^2 - \frac{1}{4}x^4 \right]_0^2$

M1 calculate area

A1

M1

$$4\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\int_{0}^{2} xy \, dx \right)$$
$$\int_{0}^{2} \frac{1}{2} y^{2} dx$$

 $\int xy \text{ or } \int \frac{1}{2} y^2 dx \text{ seen}$ **B**1

 $4\overline{x} = \int_0^2 \left(4x^2 - x^4\right) dx$

B1 both formulae correct

$$= \left[\frac{4}{3} x^3 - \frac{1}{5} x^5 \right]_0^2$$

integrate their expression

A1 or multiple

 $4\overline{y} = \int_0^2 \frac{1}{2} \left(16x^2 - 8x^4 + x^6 \right) dx$

integrate their expression M1

 $=\frac{1}{2}\left[\frac{16}{3}x^3 - \frac{8}{5}x^5 + \frac{1}{7}x^7\right]^2$

or multiple **A**1

 $\overline{x} = \frac{16}{15}$

limits M1E1

 $\overline{y} = \frac{128}{105}$

E1

(ii)

Forces concurrent

B1 (or correct moments equation)

 $CX = \frac{14}{15} \tan 60^\circ$

M1(or attempt two other equations)

 $\frac{16}{15} \tan \alpha = CX = \frac{14}{15} \sqrt{3}$

M1(or eliminate tensions)

 $\Rightarrow \alpha = 56.6^{\circ}$

A1

11

4

Examiner's Report